5 Classical Results

Theorem

The class of Primitive Recursive functions (and extensions) does not contain all the effectively computable functions:

Proof

reductio ad absurdum

1: Encode and enumerate p.r. functions

f0,\hdots,fn. There are N

2: Define diagonal func. g(x)=fx(x)+1

Intuitively computable

3: n.g(n)fn(n)n.gfn

g doesn’t appear in list

Implies there is no formalism for expressing only and all total functions.

Resulting regular expres­sion:

L={0i1j:i,j0 and wLs.t|w|=i+j} is regular if L regular T. built NFA Q×{0,1},δ((q,0),0)={(δ(q,σ),0):σΣ}.δ((q,0),ϵ)={(δ(q,1),σ):σΣ}
L={0i1j:i,j0 and wLs.t|w|=|ij|}is regular if L regular F. take L=ϵ r = r1* r2(r4+­r3r­1*r2)* where: r1: initial → initial r2: initial → accepting r3: accepting → initial r4: accepting → accepting